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2. Introduccion

El proyecto tiene como objetivo el desarrollo de una red neuronal capaz de separar sefiales
binarias segun la aleatoriedad que estas tengan.

En un instante se estudiard la idea de aleatoriedad y azar, seguido de diferentes casos historicos
de algoritmos usados con el fin de crear datos aleatorios para conocer mas en profundidad como
trabajan. Pararemos a ver los diferentes tipos de redes neuronales, diferencias con la IA y
caracteristicas y veremos el estudio practico realizado, a demds de los resultados, soluciones e
hipotesis. Finalmente se evaluara la necesidad actual de este tipo de redes, las aplicaciones,
ventajas y avances que pueden ofrecernos.

Antes de empezar, debe informarse que este trabajo no esta finalizado, es una primera parte para
posteriormente hacer un estudio mas riguroso para un Trabajo Final de Master o Doctorado que,
sin estos conocimientos no serian posibles de realizar en una instancia.

El proyecto ha sido integramente desarrollado por Matlab, si bien es cierto que Python es mas
popular y agil a la hora de entrenar redes neuronales, Matlab es mas que suficiente para adentrarse
en el estudio y aplicar los conocimientos aprendidos durante el grado.




3. Fundamentos teoricos y sefiales RTN

3.1. ;Qué es la aleatoriedad?

La aleatoriedad es la cualidad de aleatorio, que significa que depende del azar, y el azar,
segun la RAE significa sin rumbo ni orden, es decir, cualquier suceso que no se basa ni
es afectado por acciones del pasado o del futuro.

.Es correcta esta idea?

Si, tiene un significado y por tanto un sentido, pero el concepto del azar es algo que aun
no logramos comprender.

Si el azar no existe, la aleatoriedad tampoco, por lo que podemos decir que lo que va a
pasar en unas horas, el dia de manana, la semana que viene o de aqui cinco afnos, no es
aleatorio. Podemos formular esta idea ya que, actualmente, sabemos que el universo que
conocemos este compuesto por doce particulas fundamentales que interactiian de cuatro
formas predecibles.

tres generaciones de materia interacciones / particulas portadoras de fuerza
(fermiones) (bosones)
| ] mn

<2.4 MeV/c 1.275 GeVe 172.44 Gevje 0 125.09 GeVc

- @I Q- ®| @|- | @

up charm top gluon higgs graviton
4.8 MeV/C* 95 Mev/c 418 Gov/c’ Q 2\
13 13 13 0 A [
" Il ®| @ S
down strange bottom photon 8
J s \
o
0.511 Mev/c* =105.67 MeV/c* 1.7768 Gev/jc* 91.19 Gev/c® (o)
1 1 1 o 0
v & » » X y =
) w
electron muon tau Zboson | 7 =
<22ev/c <17 MeV/c <155 MeV/c’ 80.39 Gev/c
- ) 0 o 1
- @ @@ @
electron muon tau W boson

neutrino neutrino neutrino

llustracion 3.1 particulas fundamentales y particulas portadoras

Si pudieras saber ddnde estd todo y a qué velocidad se mueve sabrias el
futuro del universo dado que sabrias como cada particula interactua con las
otras, afirmando que nada es impredecible y por tanto no existe la
aleatoriedad.

- Pierre-Simon Laplace -

Este concepto puede aplicarse también al comportamiento humando dado que estamos
formados de las mismas doce particulas con las mismas cuatro interacciones, un ejemplo
muy claro es saber el estado animico o la reaccion que va a tener una persona cercana a
cierta situacion, comunmente se dice “como te conozco” pero cientificamente hablando,
las particulas de la otra persona estan influyendo en tus particulas, accionando tus campos




y moviendo informacion en tus neuronas para hacerte sentir como esta o reaccionara esa
persona en ese instante, ese es un claro ejemplo de ver el futuro.

Todo lo que hagamos o hicimos esta determinado por la informacion de ese instante.

;Qué es la informacién?

La informacion parece ser, fundamentalmente, el orden, podemos ver como el orden de
las moléculas de ADN contiene la informacion necesaria para crear a un ser vivo, al igual
que el orden de los Os y s circulando a través de internet permiten obtener toda la
informacion requerida para reproducir un video, una cancion o escribir. Nada sucede por
arte de magia, en la tecnologia, a diferencia del universo, somos nosotros quienes
dictamos la posicion de las particulas, o en este caso, del codigo binario.

Por ejemplo, si la informacion en forma binaria no pudiera sobrescribirse, borrar una letra
seria algo asi:

Acciones
Original | Byte | 01000010 01111001 01110100 01100101 4
Borrado | Byt|c | 01000010 01111001 01110100 01100101 00001000 5
Final Byte 01000010 01111001 01110100 01100101 00001000 6
01100101

Tabla 3.1 Ejemplo de uso del cédigo binario en memorias sin capacidad de almacenamiento

Una linea de cddigo infinita donde podria verse todas las acciones que se han ejecutado
gracias al codigo ASCII. Escribir determinada letra, espaciar, retroceder, hacer un enter...
Todas estas acciones quedarian grabadas en un historial binario infinito, en donde no
podria entenderse nada. Gracias a la capacidad de guardar informacion, sobrescribir,
eliminar, etc. Somos capaces de no ver ese historial de las acciones que se llevaron a cabo
para teclear.

Podemos afirmar que la informacion es orden, dado que el orden de los Os y Is crean
codigos, que se interpretan por letras, las letras forman palabras, las palabras oraciones y
por ultimo la informacion.

Que la implicacion implique orden se conoce como regularidad, pero, retomando el tema
principal, el orden no es aleatorio.

El fundador de la teoria matematica de la informacion, Claude Shannon estimé un 75%
de redundancia en el inglés dado que no todas las letras contienen la misma cantidad de
informacion y por tanto no son aleatorias. En inglés es susceptible pensar que después de
th vamos a encontrar una e, o que después de g encontraremos una u. Este simple analisis
deja ver que la e o la u tiene una mayor probabilidad de aparecer después de estas letras,
indicando que tienen muy poca informacion debido a la facilidad de predecirse de
antemano.




Albert Einstein creia que la informacion, por muy grande que fuera, puede comprimirse,
por ejemplo, leamos esta frase:

is tu pds Ir est, pdrs cnsgr un trbj my bn rmunrd!

Leer y entender la frase no es por el azar o por inteligencia, esta frase puede comprimirse
sin dejar de informar lo que quiere informar porque la informacion no es aleatoria, tiene
patrones.

Pasa lo mismo en un video, que podamos ver a través de una pantalla se debe a que todos
los pixeles tienen un orden que seguir para dar la informacion que quieres ver.

Si se quiere jugar con esto se puede hacer datamoshing que se usa en la edicidon de video
para alterar la informacion de un video a los pixeles de otro.

llustracion 3.2 Datamoshing

En esta imagen forma parte de un video en movimiento, donde, en ciertos momentos se
altera el color de ciertos pixeles, alterando la informacion. Es comtn que los pixeles
alterados sean otras imagenes, con el objetivo de que en el video original puedan
apreciarse varias imagenes superpuestas. Como curiosidad, no todo el mundo es capaz de
ver estas imagenes secundarias que se aplican, al fin y al cabo, ningtin ojo humano ve por
igual los colores, por lo que pequefios cambios de tonalidad en seglin que pixeles pueden
generar debates adversos.

Volviendo a la frase que describimos en la pagina anterior podemos dejar claro que la
informacion puede comprimirse, ;pero hasta donde? Sabemos que cualquier cosa que no
sea aleatoria puede ser comprimida, los patrones o regularidades pueden comprimirse




debido a que son predecibles, por lo que cualquier informacion puede ser comprimida
hasta que sea aleatoria, y ese pequeiio dato comprimido contendra toda la informacion
original pero destilada o, mejor dicho, como informacion pura, implicando que esto es
aleatoriedad, por lo que si queremos saber cuanta informacion tiene algo debemos saber
cuan aleatorio es, es decir, que desorden tiene o mejor dicho que entropia tiene esa
informacion pura.

La idea de que la informacion es entropia puede verse facilmente en la disposicion de la
informacion de un disco duro:

Se repite
Disco duro sin informacion 00000000 00000000 00000000 00000000 0
Disco duro con informacion 10011001 10011001 10011001 10011001 1001
Disco  duro informacion | 01000111 00000101 10110100 01011101 Nada
aleatoria

Tabla 3.2 Ejemplo de como la informacion es entropia

Podemos ver que el ultimo disco duro, contiene mucha mas informacion que el resto, pero
no tiene orden, afirmando que la informacion es entropia. Por lo que la cadena binaria
que contiene mas informacidn es la que contiene una cantidad aleatoria de ceros y unos,
ya que no puede ser comprimida, las dos primeras pueden enviarse unicamente con su
regularidad, es decir, 0 o 1001, mientras que la Gltima no puede ser comprimida y si se
quiere conocer toda la informacion estas obligado a enviar toda la cadena de niimeros.

Esto no tiene sentido para los humanos, un claro ejemplo es el ruido blanco en donde no
hay un orden binario y la sefial simplemente se limita a moverse sin ninglin patron.

Si volvemos a la cita de Laplace podemos entender que tiene una pequefia conjetura, si
su teoria es cierta implica que la informacion en el universo es siempre la misma, pero
ahora, después del paso de los afios y de conocer la entropia, sabemos que la informacion
en el universo aumenta con el tiempo, por lo que realmente no podemos predecir el futuro
dado que ese futuro tiene mds informacion que nuestro presente.

Esto se ha podido observar en la mecéanica cuantica donde, a través de experimentos, no
podemos predecir donde va a estar un electron, pero si podemos calcular donde es mas
probable que aparezca, la falta de precision siempre estara ahi, dado que ese electron tiene
informacion que nosotros no teniamos al momento de predecirlo.

La mecdnica cudntica puede comprimirse mds, mucho mds. Atn no hemos
conseguido que la informacion sea aleatoria, por lo que aun no tenemos la
informacion pura que predice el futuro.

- Albert Einstein-

Sin embargo ;Acaso es posible comprimir mas la mecanica cuantica? La respuesta, hoy,
es un no, dado que la mecénica cuantica ya trabaja por aleatoriedad.




3.2. PseudoRandom Number Generator

Los Generadores de Numeros Pseudoaleatorios, también conocidos como DRBG (Deterministic
Random Bit Generators), son algoritmos disefiados para producir secuencias de numeros cuyas
propiedades se asemejan a las de secuencias aleatorias, pero no lo son. Estos generadores no son
verdaderamente aleatorios, ya que dependen de un valor inicial o semilla, la dependencia de
cualquier valor pierde aleatoriedad, pero para las aplicaciones de uso actuales, es mas que
suficiente.

Funcionamiento basico de los PRNGs:

e Inicializacion con una Semilla: Comienza con un valor inicial o semilla. Este valor puede
ser un numero fijo, el resultado de alguna medicidén (como la hora del sistema), o derivado
de alguna otra fuente.

e Algoritmo de Generacion: Utiliza un algoritmo matematico para generar una nueva
secuencia de numeros a partir de la semilla. Este algoritmo es determinista, lo que
significa que, dada una semilla especifica, siempre producira la misma secuencia de
numeros.

e Secuencia Pseudoaleatoria: Los numeros generados por este proceso tienen la apariencia
de ser aleatorios. Esto significa que pasan ciertas pruebas estadisticas para la aleatoriedad,
como tener una distribucion uniforme o carecer de patrones predecibles.

e Repeticion y Periodicidad: Aunque los son buenos imitando la aleatoriedad,
eventualmente la secuencia se repetira, ya que el numero de estados posibles es finito
(limitado por su arquitectura, como el numero de bits en su representacion). Este periodo
puede ser extremadamente largo para algoritmos bien disefiados.

El siguiente diagrama de flujo, describe un proceso para analizar el rendimiento aleatorio de
secuencias generadas por mapas cadticos. Empieza con valores iniciales que alimentan dos
procesos: un mapa de Chebyshev y un mapa de CML (Coupled Map Lattices). El mapa de
Chebysheyv, tras pasar por una funcion de retraso temporal, genera secuencias de Chebyshev. Por
otro lado, el mapa CML produce secuencias CML y se mejora a través de un "Improved CML".
Este proceso mejorado también contribuye al mapa CML original.El mapa CML y el mapa de
Chebyshev se combinan en un mapa DCML (Delayed Coupled Map Lattices), que a su vez
produce sus propias secuencias. Tanto las secuencias de Chebyshev como las DCML se analizan
para evaluar el rendimiento aleatorio.

‘Cheybshev HTlme delay ’ Improved H CML map

map function CML
Cheybshev CML
sequences sequences

DCML
sequences
—»( Random performance analysis )‘—

llustracion 3.3 Diagrama de flujo de un PRNG basado en mapas cadticos
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Son de gran utilidad en multiples aplicaciones debido a su rapidez y reproducibilidad y suele
acompafiarse de un HRNG (Hardware Random Number Generator), que funcionan generando
numeros aleatorios a partir de procesos fisicos, generalmente cudnticos o térmicos, en lugar de
utilizar algoritmos matematicos como en los PRNGs.

Funcionamiento basico de los HRNGs:

e Procesos Fisicos: Se basan en fendomenos fisicos impredecibles como el ruido térmico,
ruido cuantico, procesos radioactivos, o efectos relacionados con la mecanica cuantica
como el efecto tinel.

e Medicion y Conversion: El dispositivo mide estas variaciones fisicas, que son
intrinsecamente aleatorias, y las convierte en datos digitales. Por ejemplo, podria medir
las fluctuaciones en la tension eléctrica o en la intensidad de la sefial.

e Digitalizacion: La sefial analogica resultante de este proceso es entonces digitalizada,
generalmente en binario.

e Post-Procesamiento: A menudo, los datos crudos generados de esta manera son
procesados para mejorar ciertas caracteristicas como la uniformidad y la independencia
estadistica. Sin embargo, este paso debe realizarse con cuidado para no introducir
patrones predecibles en los datos.

El siguiente diagrama de flujo describe un HRNG basado en un oscilador de Josephson.

El proceso comienza con una corriente de entrada que se convierte a pulsos SFQ (Single Flux
Quantum) mediante un convertidor DC/SFQ. Estos pulsos SFQ activan un flip-flop de tipo toggle
a través de una entrada de disparo. Paralelamente, los pulsos SFQ continuos generados por el
oscilador de Josephson se introducen en el sistema. El flip-flop toggle cambia su estado con cada
pulso de reloj, produciendo dos salidas complementarias (Q y Q). Estas salidas se alimentan junto
con la sefal de reloj a una puerta AND, que finalmente emite un nimero aleatorio (0 o 1) como
salida.

Este mecanismo es tipico en la criptografia y sistemas de comunicacion seguros que requieren
fuentes de aleatoriedad confiables.

Josephson oscillator
using over-biased
Josephson junction
on the edge of JTL

Continuous
pulse inputs

(SFQ pulse
3 Tl train)
Q
4+ Toggle
Input Flip Flop|
current Q Clock
$ 4 Output of
X ¥ \A Random

DC/SFQl A | AND Jigroreq” Number
converter | Trigger

! Y
input
(SFQ pulse)

llustracion 3.4 Diagrama de flujo de un HRNG basado en un oscilador Josephson
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Los HRNGs son valorados por su alta entropia y falta de previsibilidad, lo que los hace ideales
para aplicaciones como la criptografia, donde la seguridad depende de la imposibilidad de
predecir la clave generada. A diferencia de los PRNGs, que pueden, en teoria, reproducir
secuencias si se conoce su estado inicial, los HRNGs no sufren de este problema debido a la
naturaleza fundamentalmente impredecible de los procesos fisicos que utilizan.

Sin embargo, los HRNGs pueden ser mas lentos en la generacion de numeros que los PRNGs y
pueden requerir hardware especializado, lo que limita su uso en algunos contextos. Ademas, su
correcto funcionamiento depende de la calidad y el mantenimiento del hardware, asi como de la
precision en la medicion de los fendmenos fisicos.

(Para qué se usan los PRNG?

Estos generadores son fundamentales en aplicaciones como la simulacion (con el método
Montecarlo), los videojuegos (para generar entornos y eventos procedimentales) o la criptografia.
Para este ultimo, requerimos el uso de PRNGs mas complejos y elaborados donde su salida no es
predecible en base a las salidas obtenidas con anterioridad, ademas de uso de HRNGs para
complementar las salidas del software.

Se requiere un cuidadoso analisis matematico para tener la certeza de que nuestro PRNG genera
numeros lo suficientemente aleatorios para adaptarse al uso previsto.

Ventajas y desventajas

Son rapidos, eficientes y reproducibles, lo que hace que sean ideales para aplicaciones que
necesitan generar grandes cantidades de numeros pseudoaleatorios de manera constante. Pero
tiene cuatro problemas principales:

- El valor inicial

- Falta de uniformidad en la distribucion de grandes cantidades de nimeros generados.

- Correlacion de valores sucesivos

- Mala distribucion dimensional de la secuencia de salida

- Las distancias entre los lugares donde se producen determinados valores se distribuyen
de forma diferente a las de una distribucion de secuencia aleatoria.

Aun conociendo estos y mas problemas que podemos llegar a encontrarnos, el principal, obviando
la semilla, es que los defectos pueden calificarse de impredecibles a muy evidentes.

Un ejemplo historico de las limitaciones de los PRNGs es el algoritmo RAND-U, de IBM, un
generador de numeros pseudoaleatorios del tipo lineal congruencial, usado principalmente en la
década de los 60. Se define por una recurrencia especifica y genera enteros pseudoaleatorios
uniformemente distribuidos. Sin embargo, es ampliamente considerado como uno de los
generadores de niimeros aleatorios mas mal concebidos, fallando notablemente en la prueba
espectral para dimensiones mayores a 2, uno de los métodos utilizados para evaluar la calidad de
los PRNGs. Su funciéon es examinar como los numeros generados llenan un espacio
tridimensional o de dimensiones superiores. Un buen PRNG deberia llenar el espacio de manera
uniforme y aleatoria, por lo que las creaciones de patrones en ciertas areas indica falta de
aleatoriedad y uniformidad. Los valores usados para el multiplicador y el moédulo fueron elegidos
por conveniencia computacional, no por calidad estadistica. Esto resultdé en que muchos
resultados cientificos de la época en que se usé son vistos con sospecha.
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Con esta premisa, podemos asegurar que la lista de generadores ampliamente utilizados que
deberian descartarse es mucho mas larga que la lista de generadores buenos.

Durante el ultimo decalustro se ha recomendado a las empresas no comprar RNG sin antes haberlo
probado en su sistema. Seguro que todos conocemos la empresa Java y por ende su lenguaje de
programacion. Hasta 2020 ha estado confiando en un LCG (Generador Congruente Lineal) que
es un RNG de baja calidad ya que genera pseudo nimeros aleatorios basados en una funcion lineal
definida a trozos discontinua, es decir, a diferencia de la primera descripcion explicada, donde el
problema la semilla, este RNG se basa en una funcion, determinando maés el camino del préximo
valor a calcular y por ende de perder aleatoriedad. A partir de la version 17 Java cambid su RNG
a JEP 356.

Un ejemplo de un buen PRNG conocido por evitar problemas importantes y funcionar muy bien
pese al paso del tiempo es el Mersenne Twister que se publico en 1998. Este generador es uno de
los citados en la List of Random Number Generators que registra, desde el primer PRNG, los més
importantes y usados generadores hoy en dia.

3.3. Sefiales RTN

En el estudio de las sefales y su aleatoriedad, es esencial detenernos a conocer mas sobre las
sefales de Ruido Telegrafico Aleatorio (RTN), ya que seran las sefiales con las que entrenaremos
alared.

Las sefiales RTN se distinguen por sus cambios abruptos y aleatorios entre dos o0 mas niveles fijos
de voltaje o corriente, recordandonos al sonido de un telégrafo. Lo peculiar del RTN es que,
aunque sus transiciones son aleatorias, los niveles entre los que cambia son constantes y discretos.
Aqui podemos ver un ejemplo:

1 Vope=-050v

llustracion 3.5 Ejemplo de sefiales RTN

Estas fluctuaciones de corriente estan relacionadas con la captura y emision de portadores de
carga por defectos de oxido e interfaz, mostrando una gran dependencia de las condiciones de
polarizacion y temperatura del dispositivo.

La variabilidad del fenomeno RTN aumenta inversamente con la escala de area, afectando
negativamente, por ejemplo, a dispositivos analdgicos y circuitos logicos digitales como
memorias flash.

E1 RTN no solo esta presente en transistores MOSFET convencionales, sino también en memorias
de acceso aleatorio resistivas (RRAM), FET completamente agotados (FD-SOI), FinFET, FETs
de multiples puertas y dispositivos y circuitos digitales de nanohilos.
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Los FET mencionados son transistores de efecto de campo, un tipo que regula el flujo de corriente
mediante un campo eléctrico. Se usan para amplificar o conmutar sefiales y, a diferencia de los
transistores bipolares, los FET se controlan por la tension aplicada a la puerta y modulan la
conectividad entre drenador y fuente.

El origen del RTN se encuentra, como se ha comentado, en los dispositivos semiconductores y
conductores, donde los electrones interactuan con defectos o impurezas en el material. A nivel
microscopico, estos defectos actiian como trampas para los electrones, causando fluctuaciones en
la corriente o el voltaje. Por ejemplo, en un semiconductor, estos defectos pueden ser sitios donde
los electrones quedan temporalmente atrapados, alterando las propiedades eléctricas del material.

. » Substrate a

llustracion 3.6 Defectos de un semiconductor

Desde un punto de vista matematico, el RTN se modela como un proceso estocastico, descrito por
procesos de Markov o de Poisson. Estas herramientas estadisticas nos permiten describir las
caracteristicas del RTN, como la tasa de cambio entre estados y la duracion promedio en cada
estado.

Aunque a menudo consideramos el RTN como un tipo de ruido indeseado, su estudio es
fundamental en diversos campos. Es clave para comprender y mejorar la fiabilidad y el
rendimiento de los dispositivos. También se utiliza en la investigacion de materiales y en el
desarrollo de sensores.

En el contexto de nuestro proyecto, analizar las sefiales RTN significa identificar estas
fluctuaciones caracteristicas y diferenciarlas de otras formas de ruido o sefiales aleatorias. La
deteccion precisa del RTN es desafiante debido a su naturaleza aleatoria y a la presencia de otros
tipos de ruido. Para entrenar eficazmente una red neuronal en esta tarea, es crucial tener un
conjunto de datos bien caracterizado y un disefio cuidadoso del algoritmo de aprendizaje.

El proyecto se ha desarrollado en base a sefiales RTN procedentes de transistores tipo P.
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(Por qué usar sefiales RTN de transistores tipo P v no de tipo N?

La razon principal de esta diferencia reside en las caracteristicas inherentes de los materiales y la
forma en que los portadores de carga se comportan en cada tipo de transistor. Desglosemos los
puntos importantes:

Diferencia en los portadores de Carga:

En los transistores tipo N, los electrones son los portadores de carga principales. Estos
tienen una movilidad mas alta que los huecos (portadores de carga en los transistores tipo
P), lo que significa que pueden moverse mas rapidamente a través del material
semiconductor.

Interaccion con Defectos en el Material:

Los electrones en los transistores tipo N son mas susceptibles a interactuar con los
defectos o impurezas en el semiconductor. Estas interacciones pueden causar
fluctuaciones abruptas y aleatorias en la corriente eléctrica, que son la base del RTN.
Por otro lado, debido a la menor movilidad de los huecos en los transistores tipo P, la
probabilidad de interaccion con defectos es menor, que se traduce en una menor
incidencia de fluctuaciones aleatorias, y, por tanto, menos RTN.

Efectos de la Densidad de Estados:

La densidad de estados en la banda de conduccion (donde se mueven los electrones en
los transistores tipo N) es mayor que en la banda de valencia (donde se mueven los huecos
en los transistores tipo P). Esto significa que hay mas estados energéticos disponibles
para los electrones, aumentando la probabilidad de interacciones que generan RTN.

Influencia de la Tecnologia de Fabricacion:

La tecnologia y los procesos utilizados para fabricar transistores tipo P y tipo N también
juegan un papel importante. Los procesos de fabricacion pueden influir en la cantidad y
tipo de defectos presentes en el semiconductor, lo que a su vez afecta la generacion de
RTN.

Implicaciones Practicas:
En aplicaciones donde el ruido de baja frecuencia como el RTN es una preocupacion, los

transistores tipo P pueden ser preferidos debido a su menor susceptibilidad a generar este
tipo de ruido.

Sin embargo, la eleccion entre transistores tipo P y tipo N también depende de otros factores,
como la eficiencia, la velocidad y el costo.

En resumen, los transistores tipo P tienden a generar menos sefiales RTN en comparacion con los
transistores tipo N debido a la menor movilidad de los huecos, menor densidad de estados en la
banda de valencia y diferencias en las interacciones electron-defecto. Esta caracteristica los hace
mas adecuados para ciertas aplicaciones donde el ruido de baja frecuencia es una preocupacion.
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4. Redes neuronales y aprendizaje automatico

4.1. {Qué es una red neuronal?

Una red neuronal es un modelo de computacion avanzado que simula la forma en que el cerebro
humano procesa la informacion. Se utiliza en el campo de la inteligencia artificial (IA) para imitar
la capacidad del cerebro humano de reconocer patrones y tomar decisiones basadas en datos.

Las redes neuronales consisten en unidades de procesamiento, llamadas neuronas, organizadas en
capas. Estas neuronas imitan las neuronas biologicas del cerebro humano, procesando y
transmitiendo sefiales a través de la red.

Cada neurona recibe sefiales de entrada, las procesa utilizando una funcion de activacién, y luego
envia una sefial de salida a otras neuronas.

Tipos de Redes Neuronales

Las redes neuronales pueden clasificarse en cuatro grupos principales:

e Redes Feedforward: Son las mas simples, donde la informacién se mueve en una sola
direccion, hacia adelante, desde las capas de entrada, a través de las capas ocultas, hasta
la capa de salida.

e Redes Neuronales Convolucionales (CNN): Especializadas en procesar datos con una
topologia en forma de cuadricula, como imagenes.

e Redes Neuronales Recurrentes (RNN): Tienen conexiones que forman ciclos,
permitiendo que la informacion persista, lo que las hace adecuadas para tareas como el
reconocimiento de voz o el analisis de series temporales.

e Redes Neuronales Profundas (DNN): Son redes con multiples capas ocultas, lo que les
permite modelar relaciones complejas.

Dentro de cada una de ellas hay subgrupos que se clasifican en base a su arquitectura,
configuracion, el tipo de problema que resuelven o las técnicas de aprendizaje que utilizan. Estos
subgrupos permiten adaptar las redes neuronales a tareas especificas, aprovechando las
caracteristicas unicas de cada tipo.

Un ejemplo conocido son las ResNet (Redes de residuos) que es un subgrupo dentro de las CNN.
Esta red introdujo el concepto de “conexiones residuales” que permite a las sefiales saltarse ciertas
capas de la red, aumentando su velocidad de respuesta y permitiendo construir redes neuronales
mas profundas sin perder eficiencia en el entrenamiento, lo que resulta en un mejor rendimiento
en tareas complejas de vision por computador. Es altamente usada en tareas de clasificacion y
deteccion de imagenes.

Aplicaciones Comunes

e Reconocimiento de Imagenes y Vision Computarizada: Las CNN son ampliamente
utilizadas para etiquetar objetos en imagenes y videos.

e Procesamiento del Lenguaje Natural (PLN): Las RNN y las DNN permiten a las maquinas
comprender, interpretar y responder a texto y voz humana.

e Prediccion y Andlisis de Datos: En finanzas, meteorologia, y salud, las redes neuronales
analizan grandes conjuntos de datos para predecir tendencias futuras.
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Diferencia entre Red Neuronal e Inteligencia Artificial

Las redes neuronales son modelos o técnicas dentro del campo mas amplio de la IA. Se enfoca en
imitar la forma en que los humanos procesan la informacion a través de redes de neuronas.

La inteligencia artificial es un término mas amplio que abarca cualquier técnica que permite a las
maquinas imitar la inteligencia humana, incluyendo el aprendizaje, el razonamiento y la
autocorreccion. Las redes neuronales son solo una de las muchas herramientas utilizadas en IA.

Ahora entendemos que redes neuronales son componentes fundamentales en el desarrollo de
sistemas de inteligencia artificial avanzados. Permiten a las maquinas procesar datos de manera
similar a como lo hacen los humanos, aprendiendo y adaptandose a partir de la informacion que
reciben. Sin embargo, representan solo una parte del vasto campo de la [A, que incluye muchas
otras técnicas y metodologias.

Veamos entonces las dos redes aplicadas durante el estudio antes de ver sus disefios,
entrenamientos y resultados.

4.2. Red neuronal Feedforward

Las redes neuronales Feedforward (Feedforward Neural Networks, FNNs) o de Alimentacion
hacia Adelante, representan una de las formas mas basicas y esenciales en el campo de las redes
neuronales artificiales. En estas redes, la informacion se mueve en una sola direccion, de la
entrada a la salida, a través de una o més capas ocultas, sin retroalimentacion o conexiones de
retorno. Esta estructura lineal simplifica tanto el disefio como el analisis de las redes. Veamos por
partes que hay que tener en cuenta:

Estructura

1. Capa de Entrada: Donde cada neurona representa una variable de entrada. No hay
procesamiento en esta capa; simplemente pasa las entradas a la siguiente capa.

2. Capas Ocultas: Estas capas son el nicleo computacional de la red. Cada neurona en estas
capas recibe entradas de todas las neuronas de la capa anterior, suma de manera ponderada
(usando un conjunto de pesos y sesgos), y luego aplica una funcion de activacion para
generar una salida no lineal. Veamos mas en detalle estos pardmetros:

a. W(Pesos): Son coeficientes que se aplican a las entradas de la red. En una red
feedforward, cada neurona en una capa determinada recibe entradas de todas las
neuronas en la capa anterior, y cada una de estas conexiones tiene un peso asociado.
El efecto de una entrada en la activacion de una neurona se determina multiplicando
el valor de la entrada por el peso correspondiente. Los pesos son ajustados durante el
proceso de entrenamiento para minimizar la funcién de pérdida, lo que permite a la
red aprender patrones de los datos de entrenamiento.

b. b(Sesgos): Es un parametro adicional en las redes neuronales que se suma a la suma
ponderada de las entradas antes de pasar por la funcion de activacion. Los sesgos
permiten que las neuronas se activen (o no) con mayor facilidad. Por ejemplo, incluso
si todas las entradas son cero, el valor del sesgo aiin podria activar la neurona si es
suficientemente grande. Los sesgos también se ajustan durante el entrenamiento y
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ayudan a la red a modelar patrones que de otro modo serian dificiles o imposibles de
capturar si solo se usaran pesos.

c. Funcion de activacion: Las funciones de activacion introducen no linealidades en la
red, lo que es esencial para aprender y modelar relaciones complejas. Algunas de las
funciones de activacion més comunes en las redes neuronales feedforward incluyen:

= Sigmoide: Produce una salida entre 0 y 1, lo que la hace 1til para
problemas de clasificacion binaria.

= Tangente Hiperbolica (tanh): Similar a la funcion sigmoide, pero produce
salidas en un rango de -1 a 1, centrado en cero.

= Unidad Lineal Rectificada (ReLU): Proporciona una salida que es igual
a la entrada si la entrada es positiva, y cero en caso contrario. Es la
funcién de activacion mas utilizada debido a su simplicidad y eficiencia
computacional.

= Leaky ReLU: Una variante de ReLU que permite una pequefia pendiente
para valores negativos, evitando asi el problema de las neuronas
"muertas" que pueden ocurrir con ReLU.

= Exponential Linear Unit (ELU): Similar a ReLU, pero suaviza la
aproximacion para valores negativos.

= Softmax: Especialmente utilizada en la capa de salida de redes para
clasificacion multiclase, convierte las salidas en una distribucion de
probabilidad.

Cada una de estas funciones tiene propiedades y usos especificos, y la eleccion de la
funcién de activacion puede depender de la naturaleza del problema y del tipo de
datos que se estan modelando. La combinacién de pesos, sesgos y funciones de
activacion permite que las FNN realicen tareas complejas de modelado y prediccion
en una amplia variedad de campos, desde reconocimiento de imagenes hasta
procesamiento del lenguaje natural

3. Capa de Salida: La salida de la ultima capa oculta es transformada en la capa de salida,
que esta disefiada segun la tarea especifica (por ejemplo, clasificacion o regresion).
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llustracion 4.1 Diagrama de una FNN
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Algoritmo de entrenamiento y retropropagacion

El entrenamiento de una FNN implica ajustar sus pesos y sesgos para minimizar el error en sus
predicciones. Esto se realiza a través de algoritmos de entrenamiento especificos, siendo el mas
comun el descenso del gradiente en combinacion con la retropropagacion. Aqui explicaré este
proceso y otros algoritmos relevantes:

e Descenso del Gradiente:
o Concepto: Es un algoritmo de optimizacion que busca minimizar una funciéon de
coste o pérdida, que mide el error entre las predicciones de la red y los valores reales.

o Proceso: Ajusta los pesos en la direccion opuesta al gradiente de la funcion de coste
con respecto a los pesos, lo que disminuye gradualmente el error.

o Tasa de Aprendizaje: Un parametro crucial que determina el tamafio de los pasos en
la actualizacion de los pesos. Una tasa demasiado alta puede sobrepasar el minimo,
mientras que una tasa demasiado baja puede hacer que el entrenamiento sea muy
lento.
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llustracion 4.2Representacion de un descenso del gradiente

e Retropropagacion:
o Funcion: Es el método utilizado para calcular el gradiente de la funcion de coste. La
retropropagacion lleva este gradiente a través de la red, desde la salida hacia la
entrada, actualizando los pesos y sesgos en cada capa.

o Caélculo de Gradientes: Utiliza la regla de la cadena del calculo diferencial para
calcular los gradientes de la funcion de coste con respecto a cada peso y sesgo en la
red.

e Variantes del Descenso del Gradiente:
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o Gradiente Descendente Estocastico (SGD): En lugar de utilizar todo el conjunto de
datos para calcular el gradiente de la funcion de coste, el SGD utiliza un solo ejemplo
o un pequefio lote (batch) en cada iteracion, lo que hace que el entrenamiento sea mas
rapido y menos propenso a quedarse atascado en minimos locales. Previamente
hemos hablado del ResNet, que es un tipo de SGD.

o Momentum: Afiade una fraccion del gradiente de la actualizacién anterior a la
actualizacion actual, lo que ayuda a acelerar el SGD en la direccion correcta y
amortiguar las oscilaciones.

o Adagrad, RMSprop, Adam: Son algoritmos mas avanzados que ajustan la tasa de
aprendizaje durante el entrenamiento para cada peso, lo que mejora la convergencia.

SGD ResNet

llustracion 4.3 Diagrama de ResNet

e Regularizacion:
Para evitar el sobreajuste, donde la red aprende los datos de entrenamiento demasiado
bien y no generaliza correctamente a nuevos datos, se utilizan técnicas de regularizacion
como el Dropout o la Regularizacion L2. Las veremos mas adelante.

e Evaluacion y Ajuste:
Durante y después del entrenamiento, se evalia el rendimiento de la red utilizando un
conjunto de datos de validacion, y se ajustan los hiperpardmetros como la tasa de
aprendizaje, el tamafio del lote y la arquitectura de la red para optimizar su rendimiento.

El entrenamiento de una FNN es un proceso iterativo y, a menudo, experimental. La eleccion
del algoritmo de entrenamiento y la configuracion de los hiperpardmetros dependeran en gran
medida del problema especifico y de la naturaleza de los datos disponibles.
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Ventajas v Limitaciones

e Ventajas: Las FNNs son intuitivas, relativamente faciles de programar y eficaces para una
amplia gama de problemas lineales y no lineales.

e Limitaciones: No son Optimas para tareas que requieren memoria o contextualizacion de
los datos, como el procesamiento del lenguaje natural o las series temporales, donde otras
arquitecturas como las RNN (Redes Neuronales Recurrentes) son mas adecuadas.

Aplicaciones

Las FNNs son utilizadas en una variedad de aplicaciones, desde la prediccion de tendencias del
mercado hasta el diagndstico médico y la deteccion de fraudes.

Aunque las FNN son relativamente simples en comparacion con arquitecturas mas avanzadas,
siguen siendo una herramienta poderosa y fundamental en el aprendizaje automatico y la
inteligencia artificial, proporcionando una base sélida sobre la cual se construyen modelos mas
complejos.

4.3. RNN — Long Short-Term Memory (LSTM)

Las Redes Neuronales Recurrentes (RNN) con Long Short-Term Memory (LSTM) son una
variante avanzada de las RNN tradicionales, disefiadas para capturar dependencias a largo plazo
en secuencias de datos. Veamos sus aspectos clave:

Estructura

Las redes LSTM son un tipo especial de RNNs disenadas para recordar informacion durante
largos periodos de tiempo. Son particularmente utiles para secuencias de datos donde es
importante mantener informacion de estados anteriores, como en el procesamiento del lenguaje
natural o en series temporales. Al igual que en las FNNs, las LSTMs utilizan pesos, sesgos y
funciones de activacidn, pero su estructura es mas compleja debido a la recurrencia y a los
mecanismos de puertas que controlan el flujo de informacion.

En las LSTMs, hay tres tipos de puertas: la puerta de olvido, la puerta de entrada y la puerta de
salida.

- Puerta de olvido: Decide qué informacion se descarta del estado de la celda.

- Puerta de entrada: Decide qué nueva informacion se afiade al estado de la celda.

- Actualizacién del estado de la celda: Se combina la informacion antigua (modulada por
la puerta de olvido) y la nueva informacion candidata (modulada por la puerta de entrada)

para actualizar el estado de la celda.

- Puerta de salida: Decide qué parte del estado de la celda se pasa al siguiente paso de
tiempo o a la siguiente capa.
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Cada una de estas puertas tiene su propio conjunto de pesos y sesgos.

- Pesos de las puertas: Son matrices que determinan la importancia de las entradas y los
estados anteriores para el estado actual de la puerta. Los pesos en una LSTM se dividen
en dos grupos: los que se aplican a las entradas (pesos de entrada) y los que se aplican a
los estados ocultos anteriores (pesos recurrentes).

- Sesgos de las puertas: Cada puerta tiene su propio vector de sesgos, que se suma al
producto de los pesos y las entradas para ayudar a decidir cuanto de la sefial pasara a
través de la puerta.
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llustracion 4.4 Diagrama de una red neuronal RNN-LSTM

Las LSTMs utilizan varias funciones de activacion, las dos mas comunes pueden apreciarse en el
diagrama:

Sigmoide: Utilizada en las puertas de olvido, entrada y salida, esta funcion decide cuanta
informacion se debe dejar pasar a través de cada puerta. La funcion sigmoide es ideal aqui porque
su salida esta entre 0 y 1, lo que puede interpretarse como una probabilidad de "cuanto" se debe
permitir que pase la informacion.

Tangente Hiperbolica (tanh): Utilizada para crear un nuevo vector de candidatos que podria
agregarse al estado de la celda, y también se aplica al estado de la celda antes de multiplicarlo por
la activacion de la puerta de salida para obtener el nuevo estado oculto. La funcién tanh es ttil
porque su salida varia de -1 a 1, lo que ayuda a regular la naturaleza de los valores en el estado
de la celda.

En cada paso de tiempo, la LSTM realiza estas operaciones, permitiendo que la informacion fluya
a través de la red de una manera controlada, con la capacidad de mantener y descartar informacion
a lo largo del tiempo. Esto es lo que permite a las LSTMs abordar problemas de dependencias a
largo plazo, donde las redes RNN estandar suelen tener dificultades.
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llustracion 4.5 Diagrama de RNN estdndar

El diagrama representa una RNN estandar, donde tiene capacidad de pasar la informacion entre
etapas, pero sus debilidades se destacan a primera vista.

La LSTM tiene varias puertas que permiten regular el flujo de informacion, aqui la informacion
siempre es completa, no existen filtros, produciendo que la sefial de salida de una etapa sea la de
entrada de la siguiente, de forma que la informacion no se gestiona igual, dando como resultados
entrenamientos mas largos. Otra diferencia importante es la facilidad de las RNN para tener
problemas de desvanecimiento del gradiente ya que la informacion de etapas anteriores se pierde
rapidamente.

Algoritmo de entrenamiento y retropropagacion

Al igual que en las FNNS, se utiliza el descenso del gradiente y la retropropagacion para entrenar
las redes LSTM. Sin embargo, la retropropagacion en LSTM es mas compleja debido a las
conexiones recurrentes. Se hace uso de la BPTT (Retropropagacion a través del tiempo), una
variante que implica desplegar la red a través del tiempo y luego retropropagar el error desde el
final hasta el principio de la secuencia.

El entrenamiento implica ajustar los pesos y sesgos, pero debido a su arquitectura especializada
para manejar dependencias temporales, el proceso incluye pasos adicionales y consideraciones.
Veamos como se adaptaria el proceso para una LSTM:

e Descenso del Gradiente:

o Concepto: Este algoritmo se mantiene igual que en las FNN. Busca minimizar
una funcion de coste, que en el caso de las secuencias podria ser la entropia
cruzada en tareas de clasificacion o el error cuadratico medio en tareas de
regresion.

o Proceso: Para las LSTMs, esto incluye no solo las conexiones estandar sino
también las puertas y los estados de la celda.

o Tasa de Aprendizaje: Similar a las FNN, la tasa de aprendizaje es un parametro
critico. Sin embargo, puede requerir mas ajuste debido a la complejidad adicional
de las secuencias temporales.

e Retropropagacion:
BPTT (Backpropagation Through Time):
o Funciéon: BPTT es una adaptacion de la retropropagacion para redes recurrentes.
En lugar de propagar hacia atras solo a través de las capas, BPTT también
propaga el error a través del tiempo.
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o Calculo de Gradientes: Utiliza la regla de la cadena para calcular los gradientes,

pero teniendo en cuenta las conexiones temporales. Esto significa que el
gradiente de la funcion de coste se calcula en cada paso de tiempo y se acumula
a través de todos los pasos de tiempo.

Existen variaciones, pero la mas comun y popular es la:
o Truncated BPTT: Una variante de BPTT donde el gradiente se propaga hacia

atras solo por un nimero limitado de pasos de tiempo a configurar por el usuario.
Esto es util para secuencias muy largas donde el BPTT completo seria
computacionalmente costoso.
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llustracion 4.6 Diagrama de funcionamiento de BPTT y Truncated BPTT

En este diagrama podemos apreciar la Trucated BPTT a la izquierda, con su
numero limitado de pasos de tiempo, mientras que a la derecha apreciamos una
BPTT completa sin limitacion.

Aqui podemos apreciar la diferencia en una linea de tiempo:

(a) BPTT (b) Truncated BPTT

llustracion 4.7 Comparativa temporal entre BPTT y Truncated BPTT

Variantes del Descenso del Gradiente:
o Gradiente Descendente Estocastico (SGD): La variante estocastica puede ser

particularmente 1itil cuando se manejan grandes conjuntos de datos secuenciales.

Momentum: Ayuda a las LSTMs a superar los puntos planos en superficies de
error complejas que son comunes en las secuencias temporales.

Adagrad, RMSprop, Adam: Estos métodos son beneficiosos ya que adaptan la
tasa de aprendizaje de cada parametro a través del tiempo, lo cual es util dado
que diferentes partes de la secuencia pueden requerir diferentes ajustes en los
parametros.
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Regularizacion:

Técnicas como Dropout adaptado para LSTMs (donde el Dropout se aplica solo a las
conexiones no recurrentes) o la Regularizaciéon L1/L2 pueden ser necesarias para evitar
el sobreajuste en datos secuenciales complejos. Veamos en qué consisten:

o Dropout: Es wuna técnica de regularizacion que implica "desactivar"
aleatoriamente un subconjunto de neuronas durante cada iteracion del
entrenamiento. Esto significa que, en cada paso del entrenamiento, cada neurona
tiene una probabilidad p de ser ignorada, lo que evita que participe en la
propagacion hacia adelante y en la retropropagacion. Al hacer esto, Dropout
previene que las neuronas se adapten demasiado entre si, forzando a la red a
aprender representaciones mas robustas que son independientes de las
contribuciones particulares de cualquier subconjunto de neuronas. Durante la
inferencia o evaluacion del modelo, todas las neuronas se utilizan, pero sus
salidas se escalan por p para compensar el hecho de que mas neuronas estan
activas que durante el entrenamiento.

o Regulacion L1: También conocida como Lasso (Least Absolute Shrinkage and
Selection Operator), penaliza la suma del valor absoluto de los pesos del modelo.
Matematicamente, se afiade un término de penalizacién al coste que es
proporcional a la suma de los valores absolutos de los pesos:

Coste Total = Coste de Pérdida + AZ 4

donde w son los pesos del modelo y 4 es un hiperpardmetro que controla la fuerza
de la penalizacion. La regularizacion L1 tiene la propiedad interesante de
producir soluciones dispersas, lo que significa que puede hacer que algunos pesos
sean exactamente cero. Esto puede ser util para la seleccion de caracteristicas o
para crear modelos mas simples y eficientes.

o Regulacion L2: También conocida como Ridge, penaliza la suma de los
cuadrados de los pesos del modelo. El término de penalizacion que se afade a la
funcién de coste es proporcional a la suma de los cuadrados de los pesos:

Coste Total = Coste de Pérdida + AZ w?

La regularizacion L2 tiende a dispersar el error entre todos los términos, lo que
significa que en lugar de tener pesos que son cero como en L1, los pesos no se
vuelven exactamente cero, pero los valores extremos son penalizados, lo que lleva
a que los pesos sean generalmente pequefios. Esto puede ayudar a mejorar la
generalizacion del modelo al evitar que cualquier caracteristica tenga un peso
demasiado grande.

Ambas regularizaciones, L1 y L2, pueden usarse juntas, ElasticNet es un método
conocido que combina las propiedades de seleccion de caracteristicas de L1 con las
propiedades de regularizacion de L2.
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Evaluacion y Ajuste:

Durante y después del entrenamiento, se evaliia la capacidad de la LSTM para generalizar
utilizando un conjunto de validacion. Se pueden ajustar hiperparametros como la tasa de
aprendizaje, el tamafio de los lotes y la arquitectura de la red, lo que incluye el numero
de celdas LSTM y la profundidad de la red.

Ventajas y Limitaciones

Ventajas: Son especialmente buenas para aprender dependencias a largo plazo y son
menos propensas al problema del desvanecimiento del gradiente, comin en RNN
estandar.

Limitaciones: Son computacionalmente mas intensivas que las RNN tradicionales y
pueden ser mas dificiles de entrenar. También pueden ser propensas al sobreajuste,
especialmente en conjuntos de datos pequefios.

Aplicaciones

Procesamiento del Lenguaje Natural (PLN): Las LSTM son ideales para tareas como la
traduccion automatica, el modelado del lenguaje y la generacion de texto.

Series Temporales: Se utilizan para predecir tendencias del mercado de valores,
prondstico del tiempo y mas.

Reconocimiento de Voz y Musica: Pueden modelar secuencias acusticas para el
reconocimiento de voz o generar musica.

En resumen, las LSTM ofrecen una solucion poderosa y flexible para modelar secuencias de
datos, superando muchos de los desafios que presentan las RNN estandar, especialmente en tareas
que requieren comprender dependencias a largo plazo en los datos.
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5. Desarrollo del proyecto

Con los fundamentos teéricos interiorizados, podemos pasar a la practica, que constara de tres
partes. La primera es comun para las dos redes, mientras que las otras dos son completamente
diferentes y nos dejara conocer y ver mejor el comportamiento de cada una de ellas. Empecemos
entonces preparando los datos.

5.1. Preprocesamiento de los datos

Para los datos de las redes haremos uso de cinco paquetes de 504 sefiales RTN con 25.000 datos
cada una. Estos paquetes se diferencian entre si por el voltaje al que se encontraban los transistores
a la hora de tomar las medidas, por lo que tenemos:

- Paquete de muestras a 0.6V
- Paquete de muestras a 0.7V
- Paquete de muestras a 0.8V
- Paquete de muestras a 1.0V
- Paquete de muestras a 1.2V

Estas sefiales analdgicas deben ser previamente tratadas antes de poder usarse para el
entrenamiento. Durante los entrenamientos, haremos uso del primer paquete debido a que, la
teoria nos dice que, las sefiales de bajo voltaje son susceptibles a mezclarse con el ruido del
circuito, provocando una deteccion de datos erronea. Considerando esta idea, las muestras de
0.6V contendrén tiene mayor cantidad de sefiales no aleatorias y por tanto la red neuronal podra
aprender antes cuales ha de descartar.

Antes de ver el proceso de tratamiento de la sefial, haremos hincapié en que datos podriamos usar
en caso de no disponerlos. Para esta cuestion existen diferentes respuestas, como generar sefiales
analogicas (por ejemplo, con un micréfono) o tomarlas de un sensor de vibracion (que detecte las
senales de un motor). Pero, las sefiales aleatorias mas precisas pueden extraerse de la paradoja del
gato de Schrodinger, donde, sin abrir la caja el gato esta en dos estados a la vez, vivo y muerto.
Con esto nos topamos con en la mecanica cuantica y mas concretamente los escuchadores
cuanticos, maquinas que detectan el ruido cudntico, la energia minima (cercana a la mitad de la
energia de un foton) que puede ser detectada.

El método para hacer visible este ruido cuantico implica dividir un haz de laser en dos partes
iguales con un divisor de haz.

A
il
Reflected

Incident "
Light "
9 Transmitted
- >
45° A0

llustracion 5.1 Representacion de un divisor de haz de luz
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Al bloquear uno de los puertos de entrada del divisor, las fluctuaciones del vacio afectan la salida
de los dos haces parciales. Estos son luego enviados a detectores que miden la intensidad de la
corriente de fotones. El resto de las mediciones de estos dos detectores deja como resultado el
ruido cuantico. Este ruido, que surge al azar durante las mediciones, se utiliza para generar los
numeros aleatorios.

En las referencias se adjunta un escuchador cuantico online en donde se puede ver, a tiempo real,
qué esta detectando en ese momento, por lo que, no haber tenido datos, habriamos escogido la
idea de tratar sefiales cuanticas. Es mas, la idea de usar senales cuanticas en redes neuronales de
deteccion de senales aleatorias podria darnos informacion desconocida hasta el momento, porque,
(Qué pasaria si una red neuronal perfectamente capaz de detectar sefiales aleatorias no pudiera
detectar aleatoriedad en el ruido cuantico? Esta cuestion no ha sido tratada en este proyecto, pero
podria darnos informacion de si realmente las particulas se comportan de forma aleatoria o
mediante algin patréon ya que sabemos que las particulas se “comportan diferente” cuando son
observadas.

Conversién de analdgico a digital

Para transformar las sefiales analdgicas a digitales requerimos de cuatro pasos que, como
resultado, nos da una sefial ligeramente aleatoria con respecto la sefial de origen. Esta conversion
podria haberse efectuado en un solo paso estableciendo un umbral medio entre el primer valor y
el ultimo valor de cada sefial, de forma que si esta por encima de dicho umbral se escribiera un 1
y si no, un 0. Sin embargo, muchas de estas sefiales carecen de informacion y a veces no pueden
llegar a ese umbral, dejando muchas sefiales fuera del entrenamiento de la red debido a que, a
primera vista, ya se puede ver que son sefiales no aleatorias. Algunos ejemplos son por ejemplo
la sefial 4 o 1a 401:

%108 %10

-1.52 . . . -1.42
-1.53
-1.54
-1.55
-1.56
-1.46
-1.57
-1.58
-1.59
16 . :
0 05 1

-1.43 -

-1.44

145

Voltaje (V)
Voltaje (V)

1.47 |
] -1.43ﬁ
. 149 . . . .

T
.

1.5 2 25 0 0.5 1 1.5 2 25

Muestras %104 Muestras %104

llustracion 5.2 Sefial n.4 a 0.6V llustracion 5.3 Sefial n.401 a 0.6V

En estas dos sefiales carece de sentido hacer uso de un umbral medio, dado que la diferencia de
los primeros valores con el resto deja una consecutiva linea de Os seguida de una de 1s y viceversa.
Podriamos eliminar el primer pico de las dos sefales y establecer un umbral medio de solamente
los datos que parecen estar entre dos amplitudes constantes. El problema de esto es, que al
probarlo, obtenemos una consecucion de Os y 1s, algo muy poco aleatorio debido a que repetimos
constantemente el mismo patron, la probabilidad de que detras de un 0 se escriba un 1 es muy
alta, por lo que estas sefiales son predecibles y por tanto, no aleatorias.
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Sin embargo, si tenemos sefiales aleatorias que con un simple umbral podrian crear sefiales
binarias semi-aleatorias, un ejemplo de ello es la sefial numero 20, que se usara para el resto de la
explicacion de conversion:

%108

-1.5

Voltaje (V)

-1.56

-1.58

-1.59

0 0.5 1 1.5 2 25
Muestras %104

llustracion 5.4 Serial n.20 a 0.6V

Si partimos de la base de que tanto el inicio como la salida de la sefial trabajan sobre el mismo
rango de amplitud y que, en determinados puntos se establecen picos inusuales, el umbral aqui no
tiene por qué estar situado entre el valor minimo y el méaximo, simplemente podriamos
establecerse el umbral en esta area:

%10

-1.5

Voltaje (V)

-1.56

-1.57

-1.58

-1.59

0 0.5 1 1.5 2 25
Muestras %104

llustracion 5.5 Sefial n20 a 0.6V con un umbral medio

La linea roja podria ser el umbral, dictaminando que toda sefial por debajo del umbral se escribiera
como un 0, mientras que las que estén por encima se escribieran como un 1.

Esta manera tan basica de conversion de datos no es convincente, como hemos visto con las
sefiales 4 y 401 esas no hay manera alguna de que puedan llegar a generar una sefial binaria
aleatoria puesto que padecen de pocas irregularidades.

Por lo que se hizo uso de un algoritmo usado en economia que hoy en dia se aplica a través de
redes neuronales conocido como Media Movil.

Este algoritmo permite ver a tiempo real en el mercado, independientemente de la temporalidad
que el sujeto este observando, la tendencia del precio a través de un simple algoritmo que calcula
el precio medio de la cantidad de cotizaciones previas que decida el usuario. Si decide hacer una
media movil de 50 periodos implica que, sobre el grafico del activo se dibuja una grafica que
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constantemente calcula las 50 cotizaciones previas del precio, permitiendo asi a los inversores
saber la tendencia del mercado.

Este concepto viene genial para poder convertir sefiales analdgicas practicamente planas en
senales digitales semi-aleatorias. Veamos los cuatro pasos a seguir:

1- Preparacion de los datos a convertir

Este primer paso ya lo hemos visto, consiste en cargar la sefial que queremos convertir,
en este caso la numero 20.

Calculo de una media movil aleatoria mediante la funcion rand().

En este paso obtendremos dos sefiales diferentes. La primera, y més importante consiste
en hacer uso de la media moévil aleatoria mediante una funcién rand(). La idea de hacer
uso de una media movil es calcular un umbral en base a las variaciones que hay cada x
valores al azar entre el 1 al 20. Veamoslo con mas detalle:

%107°
T T T T T T T T T T
1507 | 2 7 1
/,/ \\\ III ‘\\
’ \
1508 1 | /I —
\‘ 3 ’I \\
1 \ 1
' ‘ 6 \
—1.509 [ .
2« 509 Il N - ’ 8\ y‘
S -151f ) 4 ) i
! \ K
l‘ \ II
1.511 Hj W 1
0 9 '
1512 1

1.222 1.223 1.224 1.225 1.226 1.227 1.228 1.229 1.23 1.231
Muestras «10%

llustracion 5.6 Ejemplo de cdlculo de una media movil aleatoria en la sefial n.20 a 0.6V

Podemos ver como funciona el calculo de la variacion. Si nos fijamos, el primer punto se
ha tomado como valor 0 y en los siguientes 20 datos debera parar y decir la variacion en
voltaje que hay hasta ahi. En este caso ha parado en el quinto dato, pero, como hacemos
uso de la funcion rand, cada vez que ejecutamos el codigo obtendremos variaciones
diferentes y por tanto sefales digitales diferentes. Ahora, este segundo punto pasa a valer
0 y desde este punto al siguiente pasan 9 datos, viendo que ahora hay un incremento
mucho mas ligero que el anterior. Los siguientes dos tienen un decrecimiento, el punto 5
y 6 valen 0, al igual que el 9 y 10, etc.
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De esta manera obtenemos la segunda sefal necesaria en este paso:

4 %10

Variacién de voltaje (V)

4 . . . .
0 0.5 1 1.5 2 25
Muestras %104

llustracion 5.7 Variacion calculada entre datos de la sefial n.20 a través de la Media Mavil

Esta sefal representa todas las variaciones que hemos calculado, pero tiene un problema,
trabaja tanto para valores negativos como positivos, por lo que debemos pasar toda la
senal a valores positivos elevandola al cuadrado:

%1079

Variacion de voltaje absoluto (V)

0 0.5 1 1.5 2 25
Muestras %10%

llustracion 5.8 Variacion cuadrdtica de la sefial n.20

Antes de pasar al siguiente paso, veamos como se ven las sefiales 4 y 401 después de este
procedimiento:

x10° 10

251

Variacion de voltaje absoluto (V)
P
Variacion de voltaje absoluto (V)

0.5

Mebndiddiabldiliind)

0

0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
Muestras %104 Muestras %104
llustracion 5.9 Variacion cruadrdtica de la sefial n.4 llustracion 5.9 Variacion cruadrdtica de la sefial n.401
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3- Calculo binario de las variaciones

Gracias al codigo anterior podemos establecer para cada una de las sefiales una sefial
basada en la variacion de los datos de forma aleatoria. Ahora si podemos hacer uso de un
umbral, pero es dificil encontrar un umbral que sirva para todas las sefiales. Si nos fijamos
en las tres previas podemos establecer como umbral el 0.5 nV pero no seria justo. Las
sefales 20 y 401 tendrdn una cantidad de Os muy superior a la sefial 4, por lo que dejarian
inmediatamente de ser aleatorias. Es por eso por lo que el umbral no determinara el valor
binario simplemente por estar por encima o por debajo.

El valor binario de la sefial se determinara en base a si la sefial ha cruzado dos veces por
el umbral que sera de 0.3 nV. Veamos un ejemplo:

x 10719

Variacion de voltaje absoluto (V)

05

8125 8130 81

1 1 1

8140 8145 !'8150!' 8155 8160 8165
[}] [}] [N
[}] [}] (]

Muestras

5

s g

llustracion 5.10 Fragmento de la sefial n.20 con la secuencia binaria basada en dos transiciones

En este tramo de la sefial suponemos que los valores hasta el primer cruce son 0s.
Podemos ver como, al cruzar una primera vez, el valor se mantiene, pero al cruzar una
segunda pasamos a tener 1s hasta que cambiamos de nuevo.

Para entenderlo mejor, este codigo quedaria tal que:
0000000000000 1 111111111111 0 00000 1 1111 0 00000000000000

Los ntimeros espaciados representa la posicion del dato de la imagen en donde se produce
una transicion. En este caso la sefial, a primera vista, puede no parecer aleatoria, pero hay
que considerar que se ha escogido como ejemplo un area de la sefial que con pocas
transiciones para que fuera de facil entendimiento y que la sefial se compone de 25.000
datos, aqui puede apreciarse aproximadamente un 0.1% de informacién de la sefial.
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Al unir todas estas transiciones obtenemos de la sefial 20 la siguiente sefial digital:

Valor binario

0 0.5 1
Muestras

1.5

2 25
x10%

llustracion 5.11 Sefial digital basada en la sefial n.20 a 0.6V

Las siguientes dos sefales binarias corresponden a las sefiales 4 y 401, dejando ver, como,
gracias a este método, cualquier sefial analdgica, por muy informacién que contenga,

pueden convertirse en sefiales binarias semi-aleatorias:

Valor binario

0 0.5 1 1.5 2 25
Muestras %104

llustracion 5.Sefial digital de la sefial n.4

Valor binario

0 0.5 1
Muestras

1.5

2

2.5
x10*

llustracion 5.12 Sefal digital de la sefial n.401

Este método permite generar infinitas sefiales partiendo de una sola sefial gracias al uso
de la funcién rand() que afecta a la amplitud de las variaciones y por tanto afecta al
umbral. Ademas, es curioso ver como sefiales que en un origen parecen aleatorias no lo
son, y como otras que parecen planas, acaban teniendo mas aleatoriedad de lo que
podemos imaginar, como puede pasar con la sefial nimero 4.
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5.2. Red neuronal Feedforward

Durante todo el proceso de la conversion de datos se han estado guardando las sefiales binarias
en una matriz para usarse ahora como datos de entrenamiento.

Esta matriz de nuevo consta de 504 sefiales con sus 25.000 datos, si hacemos un calculo rapido
nos damos cuenta de que la red debe ser capaz de procesar un poco mas de 12 millones de datos,
algo que, si bien a mas datos mejor rendimiento, es poco practico, ya que deja como resultado un
largo entrenamiento.

Habia que encontrar la manera de optimizar la red, reduciendo los métodos de entrenamiento y
sacrificando un poco de rendimiento.

5.2.1. Disefio y entrenamiento

La primera red neuronal para disefiar, como hemos comentado anteriormente, es la mas basica de
las redes neuronales existentes, consta de un entrenamiento lineal, sin hacer uso de datos pasados,
siendo rapida de ejecutar y practica.

Esta red solo debe cumplir una orden, calificar en aleatoria aquellas sefiales cuyo porcentaje de
Is estuviera dentro del rango de 45%-55%.

Previamente a entrenar la red programamos un cddigo donde, bajo esta condicion, los paquetes
de datos tenian:

Senal RTN [V] Sefiales aleatorias Sefiales no aleatorias
0.6 199 305
0.7 262 242
0.8 315 189
1.0 406 98
1.2 461 43

Tabla 5.1 Tabla de sefiales aleatorias y no aleatorias mediante algoritmo

Aqui podemos observar la primera suposicion que tuvimos sobre las sefiales, donde, a mas voltaje
mayor cantidad de sefiales aleatorias, debido a que el ruido no afecta tanto la sefial y las
variaciones calculadas con la Media movil son mas grandes dado que son valores reales,
permitiendo que estas crucen mas veces el umbral, haciendo mayores transiciones y, por tanto,
mayor combinacion de digitos binarios

Estos datos nos serviran como referencia para saber si la red estd trabajando como nosotros
buscamos.

34




Al finalizar el entrenamiento nos aparece el resumen. [ wetorDagam |

Tralning Results

Antes de siquiera probar la red con nuevos datos, ya
podemos saber que el entrenamiento ha sido un éxito.

Training finished: Reached minimum gradient &

Tralning Progress

Si nos fijamos en la columna Stopped Value veremos como |t Initial Vlue _|Stopped Value _|Target Value
. . , Epoch ] 16 1000
el entrenamiento ha parado en la decimosexta época de 1as  [eapearime - 000008
1000 que habian asignadas. Un poco mas abajo vemos el =" L e °
Gradient 3.17 9.93e-08 1e-07
rendimiento, del orden de 10~'2. También podemos ver el [ oco1 1216 1e+10
Validation Checks o] 0 6 -

gradiente (marcado en vede).

Tralning Algorithms

Solamente viendo estos datos sabemos que el entrenamientp e oveer Farcon e

Training Levenberg-Marquardt trainim

ha salido como buscabamos, pero vamos a ver un poco mas  Feromance: tsan squared sror mes
. .y , Calculations: MEX
en detalle la informacion que podemos obtener de aqui.

Tralning Plots

" Performance ‘ | Training State |

" Error Histogram ‘ | Regression |

llustracion 5.13 Resumen de
entrenamiento

Empezando por el diagrama. Podemos ver que la configuracion usada contiene una entrada, diez
capas ocultas y una capa de salida. Veamos que sucede en cada capa:

Input

1
Input: El dato de entrada de la red es un array que contiene las I:I
probabilidades de las 504 sefiales. Este array se ha obtenido

mediante el codigo que hemos hablado anteriormente. 5
g0 4 ' Hidden

Hidden Layers: La capa oculta es la que se encarga de procesar
los datos de entrada a través de:

W(Pesos): Matriz de pesos que conectan la entrada con
las neuronas de la capa oculta. Se ajustan automaticamente @
durante el entrenamiento para capturar los patrones en los
datos.

o
. )\ 19/

b(Sesgo): Vector de sesgo para la capa oculta.

Funcion de activacion: Hacemos uso de una funcion no
lineal que permite a la red aprender relaciones complejas.
Las neuronas en la capa oculta sumarian las entradas ' Output )
ponderadas y les aplicarian la funcion de activacion.

Output Layer: La capa de salida procesaria la salida de la capa
oculta para producir una decision binaria: aleatoria o no aleatoria.

W(Pesos) y b(Sesgo) Serian especificos para la capa de @
salida, ajustando la salida de la capa oculta para llegar a la

decision final. /

Funcion de activacion: Hacemos uso de una funcidn de

. ., . . . 1
activacion sigmoidea que convierta el resultado en una S ; ~/
probabilidad entre O y 1.

| Cutput
llustracion 5.14
Diagrama FNN
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La red neuronal aprenderia durante el entrenamiento a distinguir las secuencias en las que el
porcentaje de 1s cae dentro del rango deseado (45% - 55%) de aquellas que no lo hacen. Seria
entrenada con ejemplos de ambos tipos de secuencias y ajustaria sus pesos y sesgos para
minimizar algin tipo de funcién de pérdida que mide el error en sus predicciones.

Veamos ahora el rendimiento:

Best Validation Performance is 2.4064e-12 at epoch 16

Train
Validation
Test

Best

10°

Mean Squared Error (mse)
3
e

1010 F

| . | . | . .
0 2 4 6 8 10 12 14 16
16 Epochs

llustracion 5.15 Rendimiento del entrenamiento

El rendimiento se calcula mediante el error cuadratico medio (Mean Squared Error, MSE) contra
el nimero de épocas durante el entrenamiento. El grafico muestra cuatro lineas diferentes, cada
una representando un conjunto de datos diferente:

Train (Azul): Muestra el MSE para el conjunto de entrenamiento. Este error se calcula
durante la fase de entrenamiento y se utiliza para ajustar los pesos de la red.

Validation (Verde): Representa el MSE para el conjunto de validacion. Este conjunto no
se utiliza para el entrenamiento directo, sino para ajustar los hiperparametros y evitar el
sobreajuste. El hecho de que esta linea siga de cerca la linea de entrenamiento sin divergir
indica que el modelo esta generalizando bien y no esta sobreajustado.

Test (Rojo): Muestra el MSE para el conjunto de pruebas. Este conjunto se utiliza para
evaluar el modelo después de que el entrenamiento ha finalizado y proporciona una
evaluacion de como se desempenara el modelo en datos no vistos.

Best (Punto negro): Este punto podria representar el mejor rendimiento de la red
neuronal en algun conjunto de datos durante el entrenamiento. Suele ser el punto donde
se consiguid el menor error de validacion antes de que comenzara a aumentar nuevamente
(un indicio de sobreajuste), de ahi la razoén de porque el entrenamiento par6é en la
decimosexta época, pudo anticiparse a obtener peores rendimientos.

Todas las lineas muestran una disminucion constante en el MSE a medida que avanzan las épocas,
lo que sugiere que la red estd aprendiendo de manera efectiva. No hay una divergencia
significativa entre el entrenamiento y la validacion, lo que es un buen signo de que el modelo no
esta memorizando los datos, sino que estd generalizando para hacer predicciones sobre datos no

vistos.

El grafico utiliza una escala logaritmica en el eje Y, lo que es comun cuando se quieren mostrar
cambios en 6rdenes de magnitud en los errores y se quiere enfocar en las diferencias de errores
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cuando son muy pequefios. La escala logaritmica también ayuda a visualizar mejor el error cuando
hay cambios drasticos en su magnitud.

Veamos el Trainig State:

Gradient = 9.9251e-08, at epoch 16
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llustracion 5.16 Graficas de Gradiente, error y validacion del entrenamiento

En el estado de entrenamiento podemos ver tres métricas de rendimiento a lo largo de las épocas:

1. Grafico superior (Gradiente): Muestra la magnitud del gradiente durante el entrenamiento.
El eje Y esta en escala logaritmica, y la linea azul representa como la magnitud del gradiente
disminuye a lo largo de las épocas. Una disminucion en la magnitud del gradiente es tipica a
medida que el modelo se acerca a un minimo en la funciéon de pérdida. Si la linea se vuelve plana,
puede significar que el modelo ha alcanzado un punto donde realizar mas ajustes en los pesos no
resulta en mejoras significativas en la funcion de pérdida (posible convergencia). En este caso la
sefal no es plana, por lo que la red no es “perfecta”, quizas con mayor cantidad de datos, sefiales
y entrenamientos, quizas la curva del gradiente pudiera llegar a ser plana, confirmando que el
porcentaje de error de la red es cercano a cero.

2. Gréfico medio (Error): Este grafico muestra el error a lo largo de las épocas. Al igual que en
el grafico del gradiente, el eje Y estd en escala logaritmica y la linea azul muestra una disminucién
en el error a medida que avanza el entrenamiento, lo cual es esperado y deseado en el proceso de
optimizacion.

3. Grafico inferior (Validacion): Representa la precision de la red, dado que los valores estan
entre 0 y 1, lo cual es comun para las métricas de clasificacion. Los puntos rojos representan la
precision de validacion en cada época, y los diamantes azules indican el mejor valor de precision
alcanzado hasta ese momento. Si la precision de validacion se mantiene constante y no mejora,
podria ser un indicio de que el modelo no estd aprendiendo mas de los datos o que hay un
sobreajuste en el conjunto de entrenamiento que no permite una mejora en el conjunto de
validacion.
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En resumen, el descenso constante en el gradiente y el error sugiere que el modelo esta mejorando
y aprendiendo de los datos. Sin embargo, la precision en el conjunto de validacién no parece
mejorar, lo que podria ser motivo de una investigacion mas detallada para ajustar el modelo, los
hiperparametros o para proporcionar mas datos de entrenamiento, como hemos comentado en la
primera grafica.

Por ultimo veamos el histograma:

Error Histogram with 20 Bins
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llustracion 5.17 Histograma del entrenamiento

El histograma, o distribucion de errores, dibuja unas barras que representan el nimero de
instancias (o ejemplos) que resultaron en un determinado rango de error durante la evaluacion de
la red.

e Azul (Training): El nimero de instancias del conjunto de entrenamiento que tuvieron un
cierto rango de error.

e Verde (Validation): El nimero de instancias del conjunto de validacion que tuvieron un
cierto rango de error.

e Rojo (Test): El numero de instancias del conjunto de pruebas que tuvieron un cierto rango
de error.

La linea amarilla marcada como Zero Error indica el punto de error cero, cercano a 4.11e-8, donde
las predicciones del modelo son perfectamente precisas. Que la mayoria de las instancias en todos
los conjuntos de datos (entrenamiento, validacion y pruebas) estan acumuladas cerca del error
cero, indica que la red neuronal esta realizando predicciones muy precisas en la mayoria de los
casos.

Sin embargo, hay un pico significativo, especialmente en el conjunto de entrenamiento, donde el
numero de instancias con un error muy alto es notable. Esto podria ser un indicador de algunos
ejemplos atipicos o outliers en el conjunto de datos que la red no esta manejando bien. También
podria ser un signo de sobreajuste si el modelo esta funcionando excepcionalmente bien con el
conjunto de entrenamiento.
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El hecho de que las barras de validacion y prueba sean mas bajas en altura sugiere que hay menos
instancias con errores altos en estos conjuntos, lo cual es positivo y apunta a un buen rendimiento
general del modelo.

Sin embargo, de nuevo, es importante notar que la presencia de barras rojas y verdes en el area
de error alto sugiere que el modelo no es perfecto y que hay algunas instancias en la validacion y
pruebas donde el modelo se equivoca.

5.2.2. Prueba de la red con nuevos datos

Después de haber visto los resultados y rendimientos de la red, ha llegado el momento de
ejecutarla.

Se cargan en la red unos datos diferentes a los que se han usado en el entrenamiento. Como
resultado debe calcular su porcentaje de 1s y después ira descartando todos aquellos que no
cumplan el requisito, ademas de clasificar en aleatorias o no aleatorias las sefales. Este es un
fragmento de los que nos devuelve la red por pantalla:

Columns 40 through 52
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llustracion 5.18 Datos impresos por la red con la muestra de 0.8V

Puede darse por finalizada la parte del disefio de una red neuronal Feedforward funcional para la
clasificacion de sefales aleatorias. Pasemos a ver las redes neuronales recurrentes LSTM.

5.3. Red neuronal LSTM

La red neuronal FNN creada hasta ahora ha dado los resultados esperados, pero no es un detector
convincente. Un ejemplo de ello es que si de los 25.0000 datos, los primeros 12.000 son Os y los
siguientes 1s, la red FNN detectaria como sefial aleatoria una sefal escalon.

Las FNN no son utiles para el fin del proyecto, por lo que hay que complicar la red.

Las redes LSTM, por sus caracteristicas, entrenamientos, estructuras, etc... seran de mas utilidad.
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Sin embargo, el desarrollo de este tipo de red no ha sido posible a lo largo del estudio, los
resultados practicos obtenidos ya se han presentado, dado que Gnicamente tenemos los de la red
FNN. Sin embargo, las redes LSTM son mejores, es por ello que veremos dos ejemplos para
detectar sefiales aleatorias. Veamoslo en detalle:

5.3.1. Basada en busqueda de patrones

Las redes neuronales LSTM sabemos que son recurrentes, por lo que pasan varias veces por los
mismos datos, almacenando informacion hasta obtener la salida deseada.

La busqueda de patrones podria ser una muy buena forma de detectar sefiales aleatorias y evitaria
caer en un error en el que podria caer la sefial FNN disefiada.

Veamos varios ejemplos:
0101010101010001001110101

Esta sefial contiene trece Os y doce 1s. Si se usara esta sefial en la red FNN, nos daria como
resultado que es aleatoria, pero no es cierto. Hasta el doceavo digito se establece un patron
repetitivo de O1:

0101010101010001001110101

Esta es la mitad de la sefial, en este punto podemos determinar que la sefial no es aleatoria ya que
al final se puede volver a detectarse este patron:

0101010101010001001110101

Si bien es cierto que las sefiales tratadas no son de veinticinco digitos, estos patrones pueden
buscarse en todas, pero el nimero de digitos del patron debera ajustarse a la cantidad de datos a
tratar, veamoslo:

- Casol:
10010010111111100101000001100111001011000100100100
00100111100100111011110110010011011111011110010101

- Caso2:
10010010111111100101000001100111001011000100100100
00100111100100111011110110010011011111011110010101

Aqui podemos ver como el nimero de digitos debe ajustarse a los datos a evaluar. En el primer
caso, la busqueda de patrones se centra en dos digitos, dando un total de veinticinco patrones
detectados, esto quiere decir que cincuenta de los cien digitos son predecibles, por tanto, la sefial
no es aleatoria.

El segundo caso es igual que el primero, pero la deteccion de datos se ha efectuado en base a
cinco digitos, dejando treintaicinco datos predecibles. Solo el cambio del tamafio del patron puede
hacer que una sefial sea mas o menos aleatoria.
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Con 25.000 datos por sefial, lo mas razonable es ejecutar una busqueda de patrones irregulares
del 0.1%, es decir, veinticinco digitos seguidos. Si la red es capaz de encontrar entre un 10%-15%
de digitos predichos querra decir que la sefial no es aleatoria.

La decision de establecer estos porcentajes es meramente teorica, al no poder realizar una parte
practica en donde entrenar a la red neuronal, pero para diferentes porcentajes de salida creo que
predecir un 10% de informacion no es relevante para el conjunto. Este valor puede ser modificado
segun la delicadeza de la informacion.

Hay que remarcar que esta red si llegd a ser disefiada, pero unicamente para un patrén concreto,
es decir, la red no detectd un patron, simplemente cogié un patrén determinado y lo busco por las
distintas sefiales. Este comportamiento podria usarse con sefales FNN, por lo que carecia de
sentido afiadirlo en el proyecto. La complejidad de esta red es la capacidad de detectar patrones
de x digitos a escoger por el usuario.

5.3.2. Basada en calculo de porcentaje individual

Esta, sin lugar a duda, seria la red neuronal perfecta para la deteccion de sefiales aleatorias debido
a que basaria la clasificacion digito por digito, de esta manera exprimiremos la maxima potencia
de las redes neuronales LSTM.

La teoria principal es similar a la anterior, busqueda de patrones, pero no siempre debe ser el
mismo patron.

La red debe, antes de leer el dato, revisar toda la secuencia que lleva, buscar posibles patrones y
establecer la probabilidad que hay de que en esa posicion haya un 1.

La red dictaminara que la sefial entrante es aleatoria cuando haya habido una secuencia de
probabilidades cercana al 50% a partir de la mitad de la secuencia. ;Por qué a partir de la mitad
de la secuencia? Cuando la sefial se carga en la red, esta no tiene aun informacion, si parara al
primer 50% de posibilidades pararia en a la segunda posicion puesto que la unica informacion
que tiene es la del primer digito, es decir, nada.

Si establecemos que debe determinar la aleatoriedad de la sefial en base a la consecuencia de
porcentajes perfectos, a partir de la mitad le hemos dado tiempo suficiente a la red para leer y
entender la sefial, buscar patrones predecibles y regularidades.

Cierto es que esta teoria no puede ser afirmara debido a la no realizacion de esta, pero, la
capacidad de computo necesario para entrenar una red similar con la cantidad de datos que
tenemos es demasiado elevada como para tenerla en casa. Este tipo de red, con un archivo de
entrenamiento como nuestra matriz de sefiales, deberia ejecutarse en un super ordenador o un
ordenador cuantico y tampoco sabriamos el tiempo que podria tardar a entrenarse.

En mi experiencia dejé una torre de sobremesa con una GPU Nvidia RTX 2060 Super con una
potencia de 52 Teraflops durante 17h entrenando la red sin ninguna otra tarea en primer ni segundo
plano. Tan siquiera pudo llegar a la sefial 42. Sabiendo que a cada ciclo que hace mantiene la
informacién de todas las sefiales previas, el tiempo y coste estimado de entrenamiento es
demasiado elevado como para poder realizarse en un proyecto de este nivel, de hecho, la cantidad
de datos que debe procesar seria de 25.000!, es decir, los datos de una sefial con la funcion
factorial. Un numero que no puede siquiera ser calculado.
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6. Aplicaciones

La capacidad de una red neuronal para generar sefiales aleatorias, especialmente después de haber
aprendido a clasificarlas, tiene varias aplicaciones potenciales en diferentes campos. Algunos de
estos son:

1.

Criptografia y Seguridad Informatica:
La generacion de secuencias aleatorias es fundamental en la criptografia. Una red
neuronal capaz de generar secuencias aleatorias verdaderas podria ser utilizada para crear
claves criptograficas mas seguras, mejorar los algoritmos de cifrado, o desarrollar
sistemas de autentificacion mas robustos.

Simulaciones y Modelado Estadistico:

En areas como la fisica, la economia o la biologia, las simulaciones que requieren la
generacion de datos aleatorios pueden beneficiarse de redes neuronales que produzcan
secuencias aleatorias con propiedades estadisticas especificas.

Pruebas y Analisis de Sistemas:

En ingenieria de software y hardware, las secuencias aleatorias se utilizan para probar la
robustez y el comportamiento de los sistemas en condiciones impredecibles o bajo
diferentes escenarios.

Juegos y Entretenimiento:
En el desarrollo de videojuegos, la aleatoriedad es a menudo una caracteristica deseable
para generar entornos, eventos 0 comportamientos que sean Unicos.

Investigacion en Inteligencia Artificial:

La habilidad de generar secuencias aleatorias puede ser util en la investigacion de
algoritmos de IA, especialmente en areas como el aprendizaje reforzado, donde la
aleatoriedad puede ayudar a explorar y optimizar decisiones en entornos complejos.

Arte y Creatividad Digital:
En el ambito del arte digital y la musica, la generacion de patrones aleatorios puede ser
utilizada para crear obras Uinicas y experimentales.

Finanzas y Modelado de Mercados:
En finanzas, la generacion de series temporales aleatorias puede ayudar en la
modelizacidn de precios de activos, riesgos y en la realizacion de pruebas de estrés bajo
escenarios economicos impredecibles.

Generacion de Datos para Entrenamiento de Modelos:

En el aprendizaje automatico, especialmente en situaciones donde los datos son escasos,
la generacion de datos sintéticos aleatorios pero realistas puede ser 1til para entrenar
modelos mas robustos.

42




La capacidad de una red neuronal para generar secuencias aleatorias confiables y de alta calidad
abriria nuevas puertas en estos campos, mejorando la eficiencia, la seguridad y la creatividad en
sus respectivas aplicaciones. Peor va mas alla, paremos, paremos atencion a la primera aplicacion.
En el ambito de la seguridad informatica, la capacidad de una red neuronal para generar o
clasificar secuencias aleatorias puede tener sub-aplicaciones como:

e Generacion de Claves Criptograficas: Una de las aplicaciones mas directas seria en la
generacion de claves criptograficas. Las claves fuertes y aleatorias son fundamentales
para la seguridad de los sistemas de cifrado. Una red neuronal que pueda generar
secuencias verdaderamente aleatorias podria ser utilizada para crear claves mas seguras
y dificiles de predecir o descifrar por métodos convencionales.

e Mejora de los Algoritmos de Cifrado: En los algoritmos de cifrado, la aleatoriedad
juega un papel crucial. La generacion de secuencias aleatorias complejas y no predecibles
por redes neuronales podria incorporarse en algoritmos de cifrado para mejorar su
robustez contra ataques criptoanaliticos.

e Autenticacion y Protocolos de Seguridad: En los sistemas de autenticacion, como la
autenticacion de dos factores (2FA) o los tokens de seguridad, la generacion de codigos
o tokens aleatorios es esencial. Las redes neuronales podrian ser utilizadas para generar
estos codigos de manera mas segura, reduciendo el riesgo de prediccion o replicacion.

e Deteccion de Anomalias y Prevencion de Intrusiones: Las redes neuronales,
especialmente aquellas entrenadas para reconocer patrones aleatorios, podrian ser utiles
en la identificacion de comportamientos andmalos en redes y sistemas. Esto incluye la
deteccion de intentos de intrusion, actividades sospechosas o malware, basandose en
desviaciones de los patrones normales o esperados de trafico y uso de datos.

e Pruebas de Penetracion y Evaluacion de Vulnerabilidades: En pruebas de
penetracion, la generacion de acciones o datos aleatorios puede ser utilizada para probar
la robustez de los sistemas contra ataques impredecibles. Una red neuronal podria generar
secuencias de prueba que ayuden a identificar vulnerabilidades desconocidas.

e Generacion de Ruido para Privacidad de Datos: En escenarios donde la privacidad de
los datos es crucial, como en la comunicacion segura o en sistemas de almacenamiento
de datos, la generacion de "ruido" aleatorio por parte de redes neuronales puede ayudar a
ofuscar los datos sensibles, haciéndolos menos susceptibles a ser descifrados o
analizados.

e Blockchain y Criptomonedas: En el ambito de blockchain y criptomonedas, la
generacion de numeros aleatorios es vital para varios procesos, como la creacion de
direcciones de cartera o en el mecanismo de consenso. Las redes neuronales podrian
proporcionar un método mas seguro y eficiente para generar estos nimeros.

Si bien el potencial es considerable, también es crucial garantizar que los métodos basados en
redes neuronales no introduzcan vulnerabilidades inadvertidas. Por lo tanto, cualquier aplicacion
en seguridad informatica debe ser exhaustivamente probada y validada.

Antes de finalizar este apartado, permitidme exponer la hipotesis que dio rienda a este proyecto:

Actualmente no hay nada que no pueda ser hackeado, constantemente, dia tras dia, se libra una
lucha interna binaria de datos, en la que se crean nuevos ataques y, por ende, nuevas defensas.
Nadie puede imaginarse algo que sea “inhackeable”, al igual que el ser humano no puede entender
el concepto de infinito o inmortalidad.

Partiendo de esta idea llegue a los nimeros aleatorios y a un proyecto futuro, veamoslo.
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6.1. Hipotesis

Usaremos como ejemplo un dron y un control remoto. Actualmente la comunicacion entre estos
dos dispositivos es sencilla, hablando en términos de seguridad informatica, si tuviéramos la sefial
que los comunica es fécil interceptarla y hackear al dron.

Para evitar este problema teorizamos una manera de crear un nuevo protocolo de comunicacion
entre dispositivos que cambiara la sefial constantemente de manera aleatoria y unicamente el
receptor y emisor supieran la sefial que deben enviarse para funcionar. A esto, en seguridad
informatica se le denomina seguridad mediante la obscuridad o seguridad a través de la
aleatoriedad, vamos a analizarlas y ver la veracidad de esta hipotesis:

Viabilidad y Consideraciones

e Cambio Aleatorio de Sefales: La idea de cambiar las sefiales de comunicacion
aleatoriamente es conceptualmente similar a las técnicas utilizadas en criptografia, como
los sistemas de cifrado de clave publica o los protocolos de intercambio de claves como
Diffie-Hellman. La aleatoriedad mejora la seguridad al hacer que sea mucho mas dificil
para un atacante predecir o interceptar la comunicacion.

e Sincronizacion y Gestion de Claves: Un desafio clave en este enfoque es como ambos
dispositivos (el dron y su control) pueden sincronizar y conocer las sefiales aleatorias
mutuamente sin que un tercero pueda predecirlas o interceptarlas. Esto normalmente
implica algln tipo de intercambio de claves o un acuerdo previo sobre un método para
generar y validar estas sefiales aleatorias.

o Seguridad a Través de la Obscuridad: Aunque cambiar las sefales aleatoriamente
puede afiadir una capa de seguridad, es importante no confiar inicamente en la obscuridad
como defensa. La seguridad robusta generalmente requiere mas que solo aleatoriedad;
también implica el uso de algoritmos criptograficos probados y técnicas de autenticacion
fuertes.

e Retos Practicos: Implementar un sistema asi en la practica presentaria varios retos. Por
ejemplo, la necesidad de asegurar que la comunicacion sea resistente a interrupciones y
que los dispositivos puedan recuperarse rapidamente de errores de sincronizacion.

e Vulnerabilidad a Ataques: Aunque cambiar las sefiales aleatoriamente puede dificultar
el hackeo, no es infalible. Los ataques de repeticion, por ejemplo, podrian seguir siendo
una preocupacion si un atacante logra interceptar y retransmitir una sefial valida.

Viendo esto, la idea de utilizar sefiales que cambian aleatoriamente para la comunicacion entre un
dron y su control es conceptualmente viable y refleja principios utilizados en sistemas de
comunicacion seguros. Sin embargo, su implementacion efectiva requeriria una consideracion
cuidadosa de la sincronizacion, la gestion de claves, y la resistencia a varios tipos de ataques.

La seguridad robusta suele requerir un enfoque multifacético que incluya tanto la aleatoriedad
como técnicas criptograficas solidas, es decir, estamos aun lejos de poder ver este tipo de
comunicacion o de vivir en un sistema en donde la informacion pueda ser segure e invulnerable,
pero, la perfeccion no existe, por lo que nos queda la ciencia y la probabilidad.
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7. Conclusion

Como bien se dijo en un inicio, este proyecto es una pequeiia parte de un gran proyecto futuro,
los conocimientos aqui obtenidos son mas que suficientes para adentrarse en el estudio de las
redes neuronales que cada vez son mas complejas y con muchas mas capas de neuronas. Es por
ello por lo que los resultados del proyecto, aun teniendo fallos, pueden mejorarse notablemente,
las hipotesis o ideas planteadas son tedricamente viables. Ademas, el uso de funciones rand()
durante el preprocesado de los datos permite tener infinitas sefales de entrenamiento diferentes
y, aun no siendo aleatorias, tienen la capacidad de confundir y entrenar las redes. Por el momento
la red FNN disefiada no tiene la estricta necesidad de usar este tipo de preprocesados complejos,
sin embargo, las futuras LSTM aprovecharan esta pseudo aleatoriedad algoritmica para entrenarse
con el fin de obtener detecciones mas precisas y con un grado de error mas pequefio.

El desarrollo de redes neuronales capaces de detectar aleatoriedad binaria ya es una realidad. Sin
embargo, el siguiente paso atn esta lejos. Los préximos retos para superar son la creacion de redes
neuronales capaces de generar sefales aleatorias y posteriormente el desarrollo de nuevos
protocolos de comunicacion mas seguros. Sin embargo, aun no tenemos una infraestructura capaz
de aguantar este tipo de protocolos y siquiera sabemos si pueden llegar a ser posibles en el corto
plazo. Es importante investigar y desarrollar este tipo de tecnologias para garantizar una mayor
seguridad de los datos que, desde hace unos afios, pueden considerarse una moneda de cambio.
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